4,837 research outputs found

    LTLf and LDLf Synthesis under Partial Observability

    Get PDF
    In this paper, we study synthesis under partial observability for logical specifications over finite traces expressed in LTLf/LDLf. This form of synthesis can be seen as a generalization of planning under partial observability in nondeterministic domains, which is known to be 2EXPTIME-complete. We start by showing that the usual "belief-state construction" used in planning under partial observability works also for general LTLf/LDLf synthesis, though with a jump in computational complexity from 2EXPTIME to 3EXPTIME. Then we show that the belief-state construction can be avoided in favor of a direct automata construction which exploits projection to hide unobservable propositions. This allow us to prove that the problem remains 2EXPTIME-complete. The new synthesis technique proposed is effective and readily implementable

    Adding DL-Lite TBoxes to Proper Knowledge Bases

    Get PDF
    Levesque’s proper knowledge bases (proper KBs) correspond to infinite sets of ground positive and negative facts, with the notable property that for FOL formulas in a certain normal form, which includes conjunctive queries and positive queries possibly extended with a controlled form of negation, entailment reduces to formula evaluation. However proper KBs represent extensional knowledge only. In description logic terms, they correspond to ABoxes. In this paper, we augment them with DL-Lite TBoxes, expressing intensional knowledge (i.e., the ontology of the domain). DL-Lite has the notable property that conjunctive query answering over TBoxes and standard description logic ABoxes is re- ducible to formula evaluation over the ABox only. Here, we investigate whether such a property extends to ABoxes consisting of proper KBs. Specifically, we consider two DL-Lite variants: DL-Literdfs , roughly corresponding to RDFS, and DL-Lite_core , roughly corresponding to OWL 2 QL. We show that when a DL- Lite_rdfs TBox is coupled with a proper KB, the TBox can be compiled away, reducing query answering to evaluation on the proper KB alone. But this reduction is no longer possible when we associate proper KBs with DL-Lite_core TBoxes. Indeed, we show that in the latter case, query answering even for conjunctive queries becomes coNP-hard in data complexity

    Abstraction in situation calculus action theories

    Get PDF
    We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent’s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

    Abstraction of Agents Executing Online and their Abilities in the Situation Calculus

    Get PDF
    We develop a general framework for abstracting online behavior of an agent that may acquire new knowledge during execution (e.g., by sensing), in the situation calculus and ConGolog. We assume that we have both a high-level action theory and a low-level one that represent the agent's behavior at different levels of detail. In this setting, we define ability to perform a task/achieve a goal, and then show that under some reasonable assumptions, if the agent has a strategy by which she is able to achieve a goal at the high level, then we can refine it into a low-level strategy to do so

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page

    Hierarchical agent supervision

    Get PDF
    Agent supervision is a form of control/customization where a supervisor restricts the behavior of an agent to enforce certain requirements, while leaving the agent as much autonomy as possible. To facilitate supervision, it is often of interest to consider hierarchical models where a high level abstracts over low-level behavior details. We study hierarchical agent supervision in the context of the situation calculus and the ConGolog agent programming language, where we have a rich first-order representation of the agent state. We define the constraints that ensure that the controllability of in-dividual actions at the high level in fact captures the controllability of their implementation at the low level. On the basis of this, we show that we can obtain the maximally permissive supervisor by first considering only the high-level model and obtaining a high- level supervisor and then refining its actions locally, thus greatly simplifying the supervisor synthesis task

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    Abstraction in situation calculus action theories

    Get PDF
    We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent’s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees
    • …
    corecore